
Ellipse Detection Using Randomized Hough
Transform

Samuel A. Inverso
samuel.inverso@gmail.com

Originally Submitted: May 20, 2002
Revised: September 12, 2006

Final Project: Introduction to Computer Vision 4005-757
Professor Roger S. Gaborski

Abstract
This paper discusses the Randomized Hough Transform used to find el-

lipses in images. The equations to find ellipses and their implementation in
the algorithm are explained. The algorithm performed well, finding ellipses
of orientation 0o and 9Oo from the x-axis in various images. Ellipses were
also found in a real-world image after preprocessing.

1

Contents
1 Introduction 3

2 Algorithm 4
2.1 High Level Detail . 4
2.2 Ellipse Dissection . 5

2.2.1 Determining Ellipse Center 7
2.2.2 Determining semimajor (a) and semiminor axis’ (b)) . . . 10
2.2.3 Verifying the Ellipse Exists in the Image 12

2.3 Accumulating . 13
2.4 Storing Best Ellipses and Repeating 14

3 Results 15

4 Conclusions 25

5 Program Manual 26

2

1 Introduction
The Hough transform (HT) is a standard technique for detecting curves. The HT
consists of three steps: 1. a pixel in the image is transformed into a parameterized
curve, 2. valid curve’s parameters are binned into an accumulator where the num-
ber of curves in a bin equals its score, and 3. a curve with a maximum score is
selected from the accumulator to represent a curve in the image [5] [4].

This basic Hough Transform suffers from many difficulties stemming from
binning the curves. The accumulator’s bin sizes are determined by ”windowing
and sampling the parameter space in a heuristic way” [5]. To detect curves in a
variety of images the window size must be large, and to detect curves with a high
accuracy there must be a high parameter resolution. These two properties require
a large accumulator and much processing time. Xu et. al. [5] identified possible
problems that may occur if the accumulator is not properly defined. These are:

1. failure to detect some specific curves.

2. difficulties in finding local maxima

3. low accuracy

4. large storage

5. low speed

To reduce these problems Xu proposed a Randomized Hough transform (RHT).
RHT randomly selects n pixels from an image and fits them to a parameterized
curve. If the pixels fit within a tolerance they are added to an accumulator with a
score. Once a specified number of pixel sets are selected the curves with the best
score are selected from the accumulator and its parameters are used to represent a
curve in the image. Because only a small random subset of pixels, n, are selected
this method reduces the storage requirements and computational time needed to
detect curves in an image. In RHT if a curve in the accumulator is similar to the
curves being tested the parameters of the curves are averaged together and the new
average curve replaces the curve in the accumulator. This reduces the difficulty of
finding the local maxima in the hough space because only one point in the hough
space represents a curve, instead of a clump of near points with a local maxima.

While Xu [5] convincingly argues the benefits of the Randomized Hough
Transform, he does not give hard results to backup the theory. There are only
two examples in his paper, one detecting lines and the other detecting circles.

3

As expected, both perform much better than the standard Hough transform. In
addition, Xu states that RHT cannot be used for ”curves expressed by equations
which are nonlinear with respect to parameters,” which includes ellipses. Robert
McLaughlin [2] experimented with RHT and compared it against the standard HT
and Probabilistic Hough Transform (PHT is similar to HT but only a small portion
α of the pixels in the image, where 2% < α < 15%), are transformed.

McLaughlin achieved good results with RHT vs PHT and HT. He found RHT
had ”higher accuracy that both HT and PHT, in noise free images with multiple
ellipses” . Also, RHT was ”less subject to false alarms in both noise-free and
noisy images. Moreover, RHT proved to be faster than either SHT or PHT ... [and
required] substantially less memory” [2]. These results help verify Xu’s state-
ments on RHT. However, contrary to Xu, McLaughlin performed all experiments
with ellipses, which Xu states cannot be found by RHT. McLaughlin does this by
deriving a linear equation for ellipses.

The author’s goal was to implement the Randomized Hough Transform de-
scribed and implemented by McLaughlin [2]. In addition, Andrew Schuler’s
implementation[3] of McLaughlin’s work served as a reference for this project.
Both papers contain high level information, and a few equations, on parameteriz-
ing an ellipse and find it with a RHT, however, they leave many of the implementa-
tion details to the reader. This caused difficulty to the author in implementing the
RHT because much research was required to determine the correct ellipse equa-
tions and their application to this problem. These equations and implementation
are described below.

2 Algorithm

2.1 High Level Detail

The overall Randomized Hough Transform algorithm implemented is described
below:

1 while(we find ellipses OR not reached the maximum epoch) {
2 for(a fixed number of iterations) {
3 Find a potential ellipse.
4
5 If(the ellipse is similar to an ellipse in the
6 accumulator) average the two ellipses and replace the

4

7 one in the accumulator. Add 1 to the score.
8
9 Else insert the ellipse into an empty position in the
10 accumulator with a score of 1.
11 }
12 Select the ellipse with the best score and save it in a
13 best ellipse table.
14 Remove the best ellipse’s pixels from the image.
15 Clear the accumulator.
16 }

The algorithm executes for a number of epochs, where an epoch is the process-
ing that occurs to find ellipses through accumulation. The algorithm completes
when the maximum number of epochs is reached or it does not find ellipses for a
specified number of epochs. This allows the user to specify a large epoch maxi-
mum and still not waste computing time if the algorithm stops finding ellipses.

The main body of processing occurs in the for loop starting on line 2. During
the loop, ellipses found are accumulated and given scores. The larger the number
of iterations the more likely multiple similar ellipses will be accumulated into a
single ellipse and given a higher score. At the end of the for loop the accumulator
is searched for ellipses with high scores, which are placed in a best ellipse table.
To reduce redundant work, the best ellipses found are removed from the image.
Because these best ellipses should no longer exist the accumulator is cleared. In
this way, previously found ellipses will not generate high scores in the accumula-
tor overshadowing ellipses not found.

2.2 Ellipse Dissection
As can be seen from the High Level Algorithm Details previously described the
algorithm it self is fairly straight forward. The difficulty arises in actually param-
eterizing the ellipse such that it can be accumulated. This section describes in
detail what is necessary to accomplish this.

Ellipse Equation: A(x− p)2 + 2B(x− p)(y− q)+C(y− q)2 = 1
With restriction: B2 < 4AC
An ellipse can be described in two ways, either by its center coordinate, semi-

major axis length, semiminor axis length, and orientation (p,q,a,b,θ), or by its
center coordinate, radius out from the foci 1, radius out from foci 2, and orien-
tation (p,q,r1,r2,θ). The quin-tuple definition (p,q,a,b) was used in this imple-

5

Figure 1: Ellipse Anatomy

mentation because it followed from the equations derived to find the ellipse in an
image. The orientation, θ, was not used because no suitable equations could be
found to derive it with the information in the image. This is also the reason the
second form, i.e. using the radii, was not used.

It is worthing noting, McLaughlin [2] and Schuler [3] use the second form be-
cause it seemed to uniformally distribute the ellipse parameters across the hough
space. The equations to produce the second form were not forth coming from
those papers, and the author could not find or derive them elsewhere. Because the
orientation was not saved, this implementation only detects ellipses with major
axis 0o and 90o from the x axis. However, this limitation was considered minor in
respect to the overall problem.

Ellipse 4-tuple definition (p,q,a,b)

• p = x coordinate of ellipse center

• q = y coordinate of ellipse center

• a = semimajor axis length

• b = semiminor axis length

6

2.2.1 Determining Ellipse Center

There are five steps to determine an ellipse’s parameters from an image starting
from finding the center coordinates of the ellipse to determining the semimajor
axis’ length (a), semiminor axis’ length (b), and half the distance between the foci
(c).

Figure 2: Determining an ellipse center, which is located at the intersection of the
bisections of the three tangents to the ellipse.

1. Select three points, X1,X2, and X3
Three points are randomly selected from the image such that each point has

an equal opportunity to be chosen. Three times the number of iterations random
numbers were generated from 1 to the length of the image in subindicies to form
sets of three points for each iteration. A subindex is the number of a cell in a
matrix and ranges from 1 to the number of cells in the matrix. This is an alternative
form for specifying a matrix cell from the normal row, column form.

Only unique random numbers generated for subindicies were kept to better
cover the image, because each iteration requires three random points. If, after
throwing away duplicate points, there were not enough points for all iterations
specified, random numbers were generated until there were enough. All numbers
were kept from this second generation, even if they duplicated the first sets.

2. Determine the equation of the line for each point where the

7

Figure 3: Selecting three points to check for an ellipse.

line’s slope is the gradient at the point: y = mx +b. This is done by
checking the pixels around the point and performing a least squares
line fit to them.

Figure 4: Determine the slope and y-intercept of the line passing through the
selected point based on its neighbor pixels represented by the gridded pixels.

Determining the point’s line equation is easy with MATLAB. Roipoly was
used to select points in a seven by seven region around the point of interest. From
the coordinates of these points we use the polyfit to find the slope m1 and y-
intercept b1 for the point of interest.

3. Determine the intersection of the tangents passing through
point pairs (X1,X2) and (X2,X3)

8

Figure 5: Tangents to the ellipse at points X1,X2, and X3. The ellipse’s center is
located where the bisectors of the tangent intersections cross.

The tangent intersection points t12 and t23 are found by solving these systems
of linear equations for the x and y coordinates:

Tangents X1 and X2 for t12:[
m1x + b1 − y = 0
m2x + b2 − y = 0

]
Tangents X2 and X3 for t23:[

m2x + b2 − y = 0
m3x + b3 − y = 0

]
4. Calculate the bisector of the tangent intersection points. This

is a line from the tangent’s intersection, t, to the midpoint of the two
points, m.

The midpoint coordinate m12 equals half the distance from X1 to X2. The
midpoint coordinate and bisection coordinate t12 are used to get the bisection line
equation. This is found by solving the following equation to find the slope:

slope =
my − ty
mx − tx

9

Figure 6: The line bisecting a tangent is found using the point slope line equation,
the midpoint between the two points of interest, m, and the intersection of the
points of interest’s tangents, t.

and using the slope in the line equation to find the y-intercept:

b = slope∗ x− y = slope∗ tx − ty

the bisection line is then: y = slope∗ x−b
5. Find the bisectors intersection to give the ellipse’s center, O
The ellipse’s center is located at the intersection of the bisectors. The intersec-

tion coordinates are found using the bisectors line equations determined in step 4
in the following system of linear equations.

Ellipse center located at (x,y) derived from:

[
m1x + b1 − y = 0
m2x + b2 − y = 0

]
2.2.2 Determining semimajor (a) and semiminor axis’ (b))

Now that the ellipse’s center (p,q) has been determined (in the previous section)
the remaining ellipse parameters:

• a - semimajor axis length

• b - semiminor axis length

10

Figure 7: The tangents, bisectors, and center of ellipse found by the implemented
algorithm.

can be found from the ellipse equation: A(x− p)2+2B(x− p)(y−q)+C(y−q)2 =
1 using the three points randomly selected to create three linear equations with
respect to A, B, and C. First, the ellipse is translated to the origin to reduce the
ellipse equation to: Ax2 + 2Bxy +Cy2 = 1. This is done by subtracting p from x
and q from y for the three points selected in the beginning X1,X2, and X3.

Once the ellipse is translated to the origin, the following system of linear equa-
tions is solved to find the coefficients A, B, and C:

 Ax2
1 + 2Bx1y1 + Cy2

1 = 1
Ax2

2 + 2Bx2y2 + Cy2
2 = 1

Ax2
3 + 2Bx3y3 + Cy2

3 = 1

Next next solve the following equations for the semimajor axis (a) and semimi-

nor axis(b):
semima joraxis(a) =

√
|A−1|

semiminor (b) =
√
|C−1|

11

2.2.3 Verifying the Ellipse Exists in the Image

Even though at this point the ellipse parameters (p,q,a,b,c) were found it is pos-
sible the ellipse does not exist in the image. Two checks occur to verify the ellipse
exists. First, because the ellipse is defined by the general equation for a conic
section:

Ax2 +Bxy+Cy2 +Dx+Ey+F = 0

Figure 8: Example of different two-dimensional shapes derived from passing a
plane through a conic section [1].

The sign of 4AC−B2 determines the type of conic section [1]:

> 0 Ellipse or Circle
= 0 Parabola
< 0 Hyperbola

If the sign is positive then it is an ellipse. Even though the ellipse equation is
satisfied as we see from Figure 9 it is possible the ellipse does not have enough
pixels in the image.

To determine if the ellipse exists in the image the equation of the ellipse is
used to generate points in the image on the perimeter to the ellipse. The number
of points generated is equal to the circumference of the ellipse, which is found
with the equation: π ∗ semima jor axis ∗ semiminor axis. These points are used
to generate a mask of the ellipse, which is ’anded’ with the image. The number
of pixels in the new image are counted and divided by the circumference of the
ellipse. This yields a ratio of pixels to circumference. If the ratio is greater than a
threshold specified by the user the ellipse exists in the image.

12

Figure 9: The black ellipse is in the image. The blue ellipse is verified by the
ellipse equation, however, it does not actually exist in the image because its ratio
of pixels to circumference is to low.

p q a b score
98.8937 99.5075 25.9742 47.2827 3.0000
100.5589 99.2206 25.5182 37.1271 2.0000
105.9815 82.0521 28.4240 56.8710 1.0000
115.0860 86.8599 38.8704 58.1393 1.0000
109.0266 102.1437 45.7310 43.1455 1.0000
103.0161 95.9755 20.9283 51.6607 1.0000
89.7838 122.2568 11.4692 19.6179 1.0000

Figure 10: Example accumulator.

2.3 Accumulating
At this stage the ellipse’s parameters were found and it was verified to exist in the
image. Now the ellipse is added to the accumulator.

The accumulator stores the (p,q,a,b,score) of an ellipse. The half distance
between the foci, c, is not stored because it is not needed to generate ellipse points.
Ellipse points are generated by solving the following equations for φ = 0 to 2∗π:

x = a∗ cos(φ)
y = b∗ sin(φ)

The number of points generated are equal to the number of values used be-
tween [0 and 2 ∗π], in this algorithm the number of values generated is equal to
the circumference of the ellipse.

Below is an example accumulator. The best ellipse has a score of 3.0, is cen-
tered at (98.9,99.5), has semimajor axis of length 25.97 and semiminor axis length
47.3. Figure 11 shows the best ellipse found over the original image.

The following three steps occur to accumulate a new ellipse’s center coordi-
nates (p,q), semimajor axis (a), and semiminor axis (b).

1. For all (pi,qi,ai,bi) ellipses in the accumulator test:

• If the distance between the new ellipse center is within a threshold.√
(pi − p)2 +(qi −q)2 > distance threshold

• |ai −a| > semimajor axis threshold.
• |bi −b| > semiminor axis threshold.

13

2. For any ellipse in the accumulator where the above conditions hold, perform
a weighted average between each of the ellipse parameters (use the score as
the weight) and replace the ellipse in the accumulator with the new weighted
ellipse, then increase the score for this ellipse by one.

Example weighted average of semimajor axis length:

ai ∗ score+a
score+1

3. If there are no ellipses in the accumulator that satisfy this condition place
the new ellipse in the accumulator with a score of 1.

Figure 11: Best ellipse with score 3.0 from the example accumulator shown in
blue over the black ellipse image.

2.4 Storing Best Ellipses and Repeating

After the for loop to accumulate ellipses completes the algorithm finds the best
ellipses in the accumulator and stores them in a matrix of the same form as the
accumulator (p,q,a,b,score). Ellipses are added to the best ellipses matrix the
same way they are stored in the accumulator described in the previous section.

14

Each ellipse is compared to the new ellipse and if they are similar they are
weight averaged together based on their scores. This prevents duplicate ellipses
from occurring in the best ellipse table if they are found during different epochs.

When an ellipse is placed into the best ellipse matrix it is removed from the
image to increase the likelihood other ellipses in the image will be found. Fig-
ure 18 shows an example of the found ellipses removed from the image.

Once all the best ellipses are added to the matrix and removed from the image
the accumulator is cleared for the next epoch and the process repeats.

3 Results

Figure 12: Ellipse found in blue with score seven after 5 epochs 10 iterations per
epoch.

Figure 12 illustrates the result of running the program on an ellipse with ori-
entation 0o to the x-axis. The program ran for 5 epochs at 10 iterations per epoch.
The best ellipse found scored seven. The ellipse does fit perfectly on the ellipse
in the image, the non-overlapping area is a product of stretching the image in
MATLAB.

To determine if the ellipse program discriminates against non-ellipse objects
the ellipse program was run with non-ellipse object images. Figure 13 exemplifies

15

Figure 13: Non-ellipse object example. Both ellipse found after 5 epochs 30
iterations per epoch.

this. Both ellipses were found after 5 epochs at 30 iterations each. The program
did ignore the square and found both ellipses. The ellipses found by the program
were closer to original ellipses than they appear in the image because MATLAB
had difficulty redrawing the found ellipses over the original image when the image
was resized for input into the paper.

In the description of the algorithm it was mentioned only ellipses with orien-
tation 0o and 90o to the x-axis are accumulated correctly as equations to find the
orientation information could not be found or derived. Figure 14 demonstrates the
programs behavior given an ellipse with orientation 45o from the x-axis. As ex-
pected, the program does not find the ellipse. The center of the ellipse was found,
but during the check if the ellipse exists the ellipse is drawn without an orienta-
tion and therefore did not contain enough pixels to be considered an ellipse. If the
equations for the orientation were found, it would be trivial to add this property
to the ellipse program, as the sub-function to generate ellipse points to test for
ellipse existence does have a parameter for orientation. To make the image more
interesting than it otherwise would normally be, the score threshold was set to one
to show all ellipses found. If the score threshold was set to some real value, such
as four, the two blue ellipses would not occur on the image. The reason those
tiny ellipses are given a score of one is discussed in the explanation of the noisy

16

Figure 14: Demonstration of findellipse on ellipse with orientation 45o from x-
axis.

ellipse, Figure 15.

Figure 15: Ellipse image with 9% salt & pepper noise added. Blue ’ellipse’ found
had a score of 1.

The ellipse program was tested against some noisy ellipse images. Figure 15

17

illustrates the result of adding 9% salt & pepper noise, with MATLAB’s imnoise,
to an ellipse image. The program ran for 20 epochs at 1000 iterations for 76
minutes. Of the 20,721 unique pixels in the image approximately 6,000 pixels
were tested. Given the random nature of RHT it is unlikely these were 6,000
unique pixels. The only ellipse found is shown in blue, it had a score of 1. Given
a longer running time and higher ellipse scoreThreshold the program should find
the ellipse. It would also help if points were chosen with more intelligence than
the pure randomness of RHT.

After running through many tests, it was determined when two points are se-
lected about 75% of the semiminor axis apart and the third point was found far
away from the first two, there was a higher possibility an ellipse would be cor-
rectly found. This could be achieved by adding parameters to the ellipse program
that search for ellipses with a certain range of semimajor and semiminor axis
lengths, which would cut down on the wasted computation for ellipses that could
not possibly exist but must be tested because of the noise in the image.

Even though the findellipse program had difficulty finding ellipses in this noisy
image, a small amount of preprocessing to remove the salt & pepper noise would
greatly increase the possibility of finding the ellipses, as shown with the quarter
experiment,

Figure 16: Result of running findellipse on overlapping ellipses for 10 epochs
with 100 iterations per epoch.

Figures 16 and 17 illustrate the program behavior for overlapping ellipses.
The program did find all ellipses over different runs. Figure 16 is the result of a

18

Figure 17: Result of running findellispe on overlapping ellipses for 10 epochs at
200 iterations per epoch.

29 minute run over 10 epochs and 100 iterations per epoch. Figure 17 is the result
of running the program for 68 minutes over 10 epochs at 200 iterations per epoch.
Figure 18 shows the image with all ellipses found subtracted. The ellipses found
were not perfect because much of the image ellipses remain. This explains why,
after such a long run, the all ellipses were not found in the overlapping image
because the program kept using points from ellipses already found. One solution
to this problem is to allow the user to specify a thickness of an ellipse to remove
from the image. With a sufficiently thick ellipse all points for a found ellipse will
be removed, reducing the computation time to randomly find other ellipses in the
image.

19

Figure 18: Result of subtracting all ellipses seen in Figure 17 from overlapping
ellipse image. Notice the ellipses found were not completely removed from the
image.

20

Figure 19: Example real-world image of four quarters.

Figure 19 shows a real-world image the program ellipse detected. This is im-
age eight.tif from MATLAB, consisting of four quarters. A small amount of image
preprocessing was done before ellipse detection because the findellipse program
works best with ellipse edges. Figure 20 illustrates a bad way to detect edges on
the image. This image was produced using the original image directly and MAT-
LAB’s edge function. Findellipse had the same difficulty with this image as the
noisy ellipse image.

To correct this, the original image was median filtered using an eight by eight
matrix with MATLAB’s medfilt2 function. Figure 21 shows the filtered image.
The visage of George Washington and Eagle were nicely flattened by the median
filter. Figure 22 shows the edge image of the median filtered image. This image
was much easier for ellipse detection as seen in Figure 23 where all of the quarters
were found. This demonstrates that a small amount intelligent preprocessing goes
along way in object detection.

The RHT ran for two hours on the quarter image and processed 10,800 non-
unique pixels. As a comparison, the normal Hough Transform would need to
transform all pixels in the 242x308 image, equaling 74,546 pixels. Given the
HT and RHT perform approximately the same pixel computations it would have
taken fourteen hours for the HT to find the quarters. In addition, the HT would
have needed to store information on all 74,546 pixels while the RHT only stores

21

Figure 20: Edge image directly from the original quarters image. The findellipse
program had the same difficulty with this image as the noisy image.

information on the current pixel three set and the ellipses found. This succinctly
illustrates the benefits in reduced computation time and storage required by the
Randomized Hough Transform over the Hough Transform

22

Figure 21: Simple preprocessing of quarter image before running findellipse. This
is the result of median filtering with and eight by eight matrix on the original
image. Nicely flattens the quarters.

Figure 22: Edge image of the median filtered image quarter image.

23

Figure 23: Ellipses found in blue on the edge image of the median filtered image
overlaying the original image.

24

4 Conclusions
The Randomized Hough Transform performed well in the experiments. RHT ac-
curately discriminated between ellipses and non-ellipse objects. In noisy images
the RHT had difficulty finding the ellipses.Using image preprocessing to reduce
the noise, and the ability to limit the search space to ellipses in a range of semi-
major and semiminor axis lengths, these problems can be compensated for.

The majority of time spent developing this project consisted of finding and
deriving the ellipse equations. The Randomized Hough Transform algorithm was
simple once the equations were collected. Given the expense of finding the equa-
tions would also have occurred if the normal Hough Transform was implemented,
the RHT did significantly reduce HT computation time and storage requirements
needed to find ellipses.

25

5 Program Manual
The Randomized Hough Transform was implemented in the MATLAB function
findellipse. The program requires the ellipsep.m file to generate (x,y) points
on the ellipse. In addition, because the program is highly configurable all param-
eters are set inside the findellipseParams.m file. This is more convenient than
a function that takes fifteen arguments.

The program is run in MATALB with findellipse(image) where image is
a binary matrix with 1’s as the pixels to look at for ellipses. The image matrix is
not preprocessed in findellipse and should be an edge matrix when passed to the
program.

Findellipse returns a matrix with the best ellipses found, and image matrix
with all found ellipses removed. The best ellipses matrix returned is of the form:

p q a b score
98.8937 99.5075 25.9742 47.2827 3.0000
100.5589 99.2206 25.5182 37.1271 2.0000
103.0161 95.9755 20.9283 51.6607 1.0000
89.7838 122.2568 11.4692 19.6179 1.0000

where:

• p = x center coordinate

• q = y center coordinate

• a = semimajor axis length

• b = semiminor axis length

• score = the ellipses score

Note, the best ellipses matrix does not contain the ellipse orientation, therefore
only ellipses 0o and 900 to the x-axis are accurately detected.

The following is a description of all the parameters in findellipseParams.m.
The parameters should be directly changed in this file.

• scoreThreshHold If an ellipse’s score in the accumulator is > scoreThresh-
old it is considered an ellipse in the image.

• iterations Numbers of times to accumulate potential ellipses.

26

• maxEpochs The total number of epochs to execute. An epoch is the time
the algorithm takes to find an ellipse. Each epoch runs a loop for the number
of ’iterations’ set above. Only the best ellipses in each epoch are saved.

Note: the algorithm may stop prematurely if maxEpochsWithoutFindin-
gElipse is set to a low number.

• maxEpochsWithoutFindingEllipse The maximum number of consecutive
epochs the program will execute before prematurely terminating the algo-
rithm.

• ratioPixelsFoundToCircumferenceThresh The check to determine if an
ellipse is really in the image A number of pixels equal to the circumference
of the ellipse that would be on the perimeter of the ellipse are extracted from
the image. If the number of pixels divided by the circumference of the circle
is greater than the ratioPixelsFoundToCircumferenceThresh it is considered
to exist

• distSimThresh, majorAxisSimThresh, and minorAxisSimThresh If the
distance between an accumulated ellipse and the ellipse being added to the
accumulator is < distSimThresh and the absolute difference between the
major axises is < majorAxisSimThresh and the absolute difference between
the minor axises is < minorAxisSimThresh then the ellipse in the accumula-
tor is close enough to the ellipse being tested so they are averaged together.
The accumulated ellipse is weighted by its score in the accumulator.

• showError Any error that occurs during accumulation is ignored because
it is most likely the result of the ellipse not being in the image. All error
messages are suppressed unless showError = 1. Note: if set to 1 the program
still ignores the error, but it will tell you it ignores it.

• showBest 1 to show the best ellipses on the image at the end. 0 don’t do it.

• debugOn 1 to print debugging info, 0 to not

• showit 1 to show the accumulated ellipse, 0 to not

27

References
[1] David Manura. Dave’s math tables: Conic sections.

[2] McLaughlin and Robert. Randomized hough transform: Improved ellipse
detection with comparison. Technical Report JP98-01, 1998.

[3] Andrew Schuler. The randomized hough transform used for ellipse detection.

[4] Stockman Shapiro. Computer Vision. Prentice Hall, 2001.

[5] Lei XU, Erkki OJA, and Pekka Kultanena. A new curve detection method:
Randomized hough transform (rht). Pattern Recognition Letters, (11):331–
338, 1990.

28

